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Abstract

An experimental test of Local-Oscillator (L.O.) degradation of time–sequential passive oscillator
performance was accomplished using the TAC-controlled crystal oscillator described in an accom-
panying paper. For this quantitative demonstration, an electronic frequency–counter discriminator
replaced the trapped ion physics package in a closed–loop experiment. With a 10 second cycle
time and 5 second dead time, L.O. limited stability was demonstrated in excellent agreement with
theoretical calculations. The results are also in agreement with computer simulations and confirm
previous noise analysis for the case of a passive standard with short pulse “Ramsey” interrogation.

Background

A methodology for calculating L.O. induced
degradation for pulse-mode atomic frequency stan-
dards has been available for some time, represent-
ing the first quantitative analysis of this fundamen-
tal limitation for any passive atomic frequency stan-
dard.[1,2] Passive standards use atomic or ionic tran-
sitions with very narrow linewidths to sense and
correct the frequency of an ancillary local oscilla-
tor. Frequency variability in the L.O. is detected
and corrected by counting photon or atoms. Sta-
tistical variation of these counts gives rise to a fre-
quency stability (Allan Deviation of fractional fre-
quency σy(τ)) that improves with increasing mea-
suring time τ as σy(τ) ∝ 1/

√
τ . An ideal feedback

loop might be expected to show a rapidly improving
deviation σ(τ) ∝ 1/τ as it transitions between L.O.
performance at shorter measuring times to statistical
atomic performance at longer times.

The importance of the L.O. analysis is that it
shows that any time-variation in the sensitivity of
the feedback signal will alias (down-convert) rela-
tively high–frequency oscillator noise to near zero

∗This work was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.
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Figure 1: Short– and medium–term frequency stabil-
ity features for an ion trap standard with cycle time
of 10 seconds. Values for R are shown in Fig. 2.

frequency. The associated σ(τ) ∝ 1/
√

τ L.O. con-
tribution fundamentally limits and masks the white
frequency noise performance of atomic standard it-
self.

The interrelation of these various dependencies is
shown in Figure 1 for the JPL mercury–based Linear
Ion Trap Standard (LITS) stabilizing a quartz L.O.
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Figure 2: Calculated dependence of dimensionless
constant R on “dead time” for various interrogation
strategies assuming a Flicker–Frequency L.O. R de-
scribes the L.O.–limited σ ∝ τ− deviation for the
passive standard (see Fig. 1). A value of R = 0.533
is predicted for the present experiment, correspond-
ing to a dead time fraction of 0.5 and narrow double
pulse interrogation.

with an assumed flicker–frequency floor of 3×10−13.
The L.O.–induced stability limitation is described in
terms of a dimensionless constant R which depends
on the details of the interrogation strategy, e.g. dead
time and rf pulse length. Calculated values for R
vary from 0.2 to 1.0 for typical interrogation strate-
gies. From Fig. 1 we can see that the performance of
this standard will be substantially degraded for these
strategies, unless an improved local oscillator can be
found.

The top two curves in Figure 2 show the calcu-
lated dependence of R on “dead time” for single- and
double–pulse interrogation for a flicker–frequency
L.O.[2] The advantages of a short dead time and of
Ramsey interrogation are apparent. For example, if
the fractional dead time is only 0.1, R is reduced to
a value 0.135. This compares to an absolute mini-
mum of R = 0.31 for single–pulse interrogation. Also
shown are curves that display the much lower values
for R which are available if dead time is eliminated
by the use of two independently interrogated ion col-
lections.

In this paper we consider the particularly simple
case of a repeating interrogation cycle which has a
constant sensitivity to L.O. frequency for a period of
time, followed by an equal “dead–time” during which
the frequency of the L.O. is not observed. This case
is approximated in atomic standards by “Ramsey
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Interrogation” with very short interrogation pulses,
and was one of those previously analyzed.

Experimental

Figure 3 shows the feedback loop for the tests de-
scribed here. A high resolution electronic frequency
counter replaces the trapped–ion physics package
in order to eliminate the effects of discriminator–
induced noise, and thus to isolate those instabilities
that are due to the local oscillator and the feedback
loop. The tests focused on measurements with a
relative large dead time fraction of 0.5. This en-
ables a relatively quick transition from σ(τ) ∝ 1/τ
feedback–limited performance to the σ(τ) ∝ 1/

√
τ

L.O.–limited performance. The arrangement has no
expected 1/

√
τ contribution due to the H–maser ref-

erence, and so all such effects can be attributed to
the L.O. and loop effects.

In addition to experimental tests, computer sim-
ulations were performed using a commercial soft-
ware package with sequences of 16384 to 65536 noise
events. Flicker noise was generated using the inter-
nal ifft, random noise, and cumulative normal dis-
tribution functions with a 1/

√
ω fourier amplitude

multiplying factor. The resulting simulated time se-
quences gave excellent (nearly constant) Allan Devi-
ation performance for τ values less than one half the
total sample size. Another test of this very simple
and accessible simulation technique gave fairly good
values for the logarithmic correction to an expected
t2 dependence of the time error variance, extrapo-
lated from the beginning interval.[4]

Several different digital feedback loop algorithms
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Figure 4: Calculated, simulated and measured loop
performance for 50% dead time. Actual quartz os-
cillator stability was 1.9×10−13 at 10 seconds (one
cycle).

were tried, both in simulation and test. These in-
cluded the lamp drift–rejecting 1–2–1 weighted loop
algorithm often used for ion trap feedback systems[3],
more conventional digital loops[5] and a new “white–
walk” routine based on linear combinations of loops
optimized for white and random walk noise.[6]

Results

Theoretical, simulation, and experimental data for
Allan Deviation of fractional frequency are shown in
Figure 4. The straight line asymptotic dependence
corresponds to the value of R = 0.533 given by Fig.
2 for the test configuration. All show excellent agree-
ment. Normalization of the experimental and theo-
retical results was made to the flicker–floor for the
TAC–driven quartz oscillator of 1.9 × 10−13. Loop
parameters for both simulation and experimental re-
sults were identical, and were optimized for random-
walk-of-frequency L.O. noise on account of quartz
oscillator frequency wander at the longer measuring
times.

The results in Fig. 1 demonstrate a loop at-
tack time of approximately 2.7 times the cycle time.
These results are substantially improved over those
attainable with the more conventional 1–2–1 feed-
back scheme. As shown in Figure 5, simulation re-
sults without dead time effects show a long–term 1/τ
performance improvement by a factor of two. We
find that more conventional loops also improve on
the 1–2–1 loop, but only by a factor of ≈ √

2.[5] The
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Figure 5: Simulated loop performance for several al-
gorithms without dead time.

simulations also show that improper loop character-
istics may give rise to 1/

√
τ contribution from the

L.O., even without dead time, or other time varia-
tion for the loop gain.
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